
Why not be Versatile?
Applications of the SGNMT Decoder for Machine

Translation

Felix Stahlberg† fs439@cam.ac.uk
Danielle Saunders† ds636@cam.ac.uk
Gonzalo Iglesias‡ giglesias@sdl.com
Bill Byrne‡† bill.byrne@eng.cam.ac.uk, bbyrne@sdl.com
†Department of Engineering, University of Cambridge, UK
‡SDL Research, Cambridge, UK

Abstract
SGNMT is a decoding platform for machine translation which allows paring various modern
neural models of translation with different kinds of constraints and symbolic models. In this
paper, we describe three use cases in which SGNMT is currently playing an active role: (1)
teaching as SGNMT is being used for course work and student theses in the MPhil in Machine
Learning, Speech and Language Technology at the University of Cambridge, (2) research as
most of the research work of the Cambridge MT group is based on SGNMT, and (3) technology
transfer as we show how SGNMT is helping to transfer research findings from the laboratory
to the industry, eg. into a product of SDL plc.

1 Introduction

The rate of innovation in machine translation (MT) has gathered impressive momentum over
the recent years. The discovery and maturation of the neural machine translation (NMT)
paradigm (Sutskever et al., 2014; Bahdanau et al., 2015) has led to steady and substantial im-
provements of translation performance (Williams et al., 2014; Jean et al., 2015; Luong et al.,
2015; Chung et al., 2016; Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017). Fig. 1
shows that this progress is often driven by significant changes in the network architecture. This
volatility poses major challenges in MT-related research, teaching, and industry. Researchers
potentially spend a lot of time implementing to keep their setups up-to-date with the latest
models, teaching needs to identify suitable material in a changing environment, and the in-
dustry faces demanding speed requirements on its deployment processes. Another practical
challenge many researchers are struggling with is the large number of available NMT tools (van
Merriënboer et al., 2015; Junczys-Dowmunt et al., 2016; Klein et al., 2017; Sennrich et al.,
2017; Helcl and Libovický, 2017; Bertoldi et al., 2017; Hieber et al., 2017).1 Committing to
one particular NMT tool bears the risk of being outdated soon, as keeping up with the pace of
research is especially costly for NMT software developers.

The open-source SGNMT (Syntactically Guided Neural Machine Translation) de-
coder2 (Stahlberg et al., 2017b) is our attempt to mediate the effects of the rapid progress in

1See https://github.com/jonsafari/nmt-list for a complete list of NMT software.
2Full documentation available at http://ucam-smt.github.io/sgnmt/html/.



Figure 1: Best systems on the English-German WMT news-test2014 test set over the years
(BLEU script: Moses’ multi-bleu.pl).

MT and the diversity of available NMT software. SGNMT introduces the concept of predictors
as abstract scoring modules with left-to-right semantics. We can think of a predictor as an inter-
face to a particular neural model or NMT tool. However, the interface also allows to implement
constraints like in lattice or n-best list rescoring, and symbolic models such as n-gram language
models or counting models as predictors. Our software architecture is designed to facilitate the
implementation of new predictors. Therefore, SGNMT can be extended to a new model or tool
with very limited coding effort because rather than reimplementing models it is often enough to
access APIs within an adapter predictor.3 Software packages which are not written in Python
can be exposed in SGNMT if they have a Python interface.4 Once a new predictor is imple-
mented, it can be directly combined with all other predictors which are already available in
SGNMT. Therefore, general techniques like lattice and n-best list rescoring (Stahlberg et al.,
2016; Neubig et al., 2015), ensembling, MBR-based NMT (Stahlberg et al., 2017a), etc. only
need to be implemented once (as predictor), and are automatically available for all models. This
does not only speed up the transition to a new NMT toolkit, it also allows the combination of
different NMT implementations, eg. ensembling a Theano-based NMT model (van Merriënboer
et al., 2015) with a TensorFlow-based Tensor2Tensor (Google, 2017) model. Hasler et al. (2017)
demonstrated the versatility of SGNMT by combining five very different models (RNN LM,
feedforward NPLM, Kneser-Ney LM, bag-to-seq model, seq-to-seq model) and a bag-of-words
constraint using predictors.

Not only the way scores are assigned to translations is open for extension in SGNMT
(via predictors), but also the search strategy (decoder) itself. Decoders in SGNMT are defined
upon the predictor abstraction, which means that any search strategy is compatible with any
predictor constellation. Therefore, common search procedures like beam search do not need to
be reimplemented for every new model or toolkit.

Secs. 2 to 4 describe central concepts in SGNMT like predictors and decoders briefly and
outline some common use cases. Sec. 5 shows that the SGNMT software architecture has
proven to be very well suited for our research as new directions can be quickly prototyped, and
new NMT toolkits can be introduced without breaking old code. Sec. 6 and Sec. 7 discuss the
benefits of SGNMT in teaching and industry, respectively.

3Making all models of the T2T library (Google, 2017) available to SGNMT took less than 200 lines of code.
4For example, the neural language modeling software NPLM (Vaswani et al., 2013) is written in C++, but can be

accessed in SGNMT via its Python interface.



Figure 2: Greedy decoding with the predictor constellation nmt,fst for lattice rescoring.

2 The Predictor Interface

Predictors in SGNMT provide a uniform interface for models and constraints. Since predictors
are decoupled from each other, any predictor can be combined with any other predictor in a
linear model. One predictor usually has a single responsibility as it represents a single model or
type of constraint. Predictors need to implement the following methods:

• initialize(src sentence) Initialize the predictor state using the source sentence.

• get state() Get the internal predictor state.

• set state(state) Set the internal predictor state.

• predict next() Given the internal predictor state, produce the posterior over target
tokens for the next position.

• consume(token) Update the internal predictor state by adding token to the current
history.

The structure of the predictor state and the implementations of these methods differ sub-
stantially between predictors. Stahlberg et al. (2017b) provide a full list of available predictors.
Fig. 2 illustrates how the fst and the nmt predictors work together to carry out (greedy) lattice
rescoring with an NMT model. The predict next() method of the nmt predictor produces
a distribution over the complete NMT vocabulary {A,B,C,UNK, </s>} at each time step in
form of negative log probabilities. The fst predictor returns the scores of symbols with an out-
going arc from the current node in the FST in predict next(). The linear combination
of both scores is used to select the next word, which is then fed back to the predictors via
consume(). Words outside a predictor vocabulary are automatically matched with the UNK
score. For instance, ‘D’ in Fig. 2 is matched with the NMT ‘UNK’ token. Pseudo-code for the
predictors and the decoder is listed in Figs. 3 and 4, respectively.



c l a s s NMTPredictor ( P r e d i c t o r ) :
def i n i t i a l i z e ( s r c s e n t e n c e ) :

e n c s t a t e s = e n c c o m p u t a t i o n g r a p h (
s r c s e n t e n c e )

d e c i n p u t = [BOS]
def p r e d i c t n e x t ( ) :

s c o r e s , d e c s t a t e = \
d e c c o m p u t a t i o n g r a p h (

d e c i n p u t , e n c s t a t e s )
re turn s c o r e s

def consume ( word ) :
d e c i n p u t = word

def g e t s t a t e ( ) :
re turn d e c s t a t e , d e c i n p u t

def s e t s t a t e ( s t a t e ) :
d e c s t a t e , d e c i n p u t = s t a t e

(a) The nmt predictor

c l a s s F S T P r e d i c t o r ( P r e d i c t o r ) :
def i n i t i a l i z e ( s r c s e n t e n c e ) :

Load FST f i l e
c u r n o d e = s t a r t n o d e

def p r e d i c t n e x t ( ) :
re turn o u t g o i n g a r c s ( c u r n o d e )

def consume ( word ) :
c u r n o d e = c u r n o d e . a r c s [ word ]

def g e t s t a t e ( ) :
re turn c u r n o d e

def s e t s t a t e ( s t a t e ) :
c u r n o d e = s t a t e

(b) The fst predictor

Figure 3: Pseudo-code predictor implementations

c l a s s GreedyDecoder ( Decoder ) :
def decode ( s r c s e n t e n c e ) :

i n i t i a l i z e p r e d i c t o r s ( s r c s e n t e n c e )
t r g t s e n t e n c e = [ ]
t r g t w o r d = None
whi le t r g t w o r d != EOS :

t r g t w o r d = argmin ( combine ( p r e d i c t o r s . p r e d i c t n e x t ( ) ) )
t r g t s e n t e n c e . append ( t r g t w o r d )
p r e d i c t o r s . consume ( t r g t w o r d )

re turn t r g t s e n t e n c e

Figure 4: Pseudo-code implementation of greedy decoding

3 Search Strategies

Search strategies, called Decoders in SGNMT, search over the space spanned by the predictors.
We use different decoders for different predictor constellations, e.g. heuristic search for bag-
of-words problems (Hasler et al., 2017), or beam search for NMT. SGNMT can also be used
to analyze search errors. Tab. 1 compares five different search configurations for SMT lattice
rescoring with a Transformer model (Vaswani et al., 2017) on a subset5 of the Japanese-English
Kyoto Free Translation Task (KFTT) test set (Neubig, 2011). Following Stahlberg et al. (2016)
we measure time complexity in number of node expansions. Our depth-first search algorithm
stops when a partial hypothesis score is worse than the current best complete hypothesis score
(admissible pruning), but it is guaranteed to return the global best model score. Beam search
yields a significant amount of search errors, even with a large beam of 20. Interestingly, a
reduction in search errors does not benefit the BLEU score in this setting.

5SMT lattices are lightly pruned by removing paths whose weight is more than five times the weight of the shortest
path. For the experiments in Tab. 1 we removed very long sentences from the original test set to keep the runtime under
control. Lattices have 271 nodes and 408 arcs on average.



Average number of node Sentences with BLEU
expansions per sentence search errors score

Exhaustive enumeration 652.3K 0% 21.7
Depth-first search with admissible pruning 3.0K 0% 21.7
Beam search (beam=20) 250.5 20.3% 21.9
Beam search (beam=4) 64.8 41.9% 21.9
Greedy decoding 18.0 67.9% 22.1

Table 1: BPE-level SMT lattice rescoring with different search strategies. The BLEU score
does not benefit from less search errors due to modeling errors.

Pure NMT SMT lattice MBR-based
rescoring NMT-SMT hybrid

Theano: Blocks (van Merriënboer et al., 2015) 18.4 18.9 19.0
TensorFlow: seq2seq tutorial6 17.5 19.3 19.2
TensorFlow: NMT tutorial7 18.8 19.1 20.0
TensorFlow: T2T Transformer (Google, 2017) 21.7 19.3 22.5

Table 2: BLEU scores of SGNMT with different NMT back ends on the complete KFTT test
set (Neubig, 2011) computed with multi-bleu.pl. All neural systems are BPE-based (Sen-
nrich et al., 2016) with vocabulary sizes of 30K. The SMT baseline achieves 18.1 BLEU.

4 Output Formats

SGNMT supports five different output formats.

• text: Plain text file with first best translations.

• nbest: n-best list of translation hypotheses.

• sfst: Lattice generation in OpenFST (Allauzen et al., 2007) format with standard arcs.

• fst: Lattices with sparse tuple arcs (Iglesias et al., 2015) which keep predictor scores
separate.

• ngram: MBR-style n-gram posteriors (Kumar and Byrne, 2004; Tromble et al., 2008) as
used by Stahlberg et al. (2017a) for NMT.

5 SGNMT for Research

SGNMT is designed for environments in which implementation time is far more valuable than
computation time. This basic design decision is strongly reflected by the software architecture
which accepts degradations in runtime in favor of extendibility and flexibility. We designed
SGNMT that way because training models and coding usually take the most time in our day-to-
day work. Decoding, however, usually takes a small fraction of that time. Therefore, reducing
the implementation time has a much larger impact on the overall productivity of our research
group than improvements in runtime, especially since decoding can be easily parallelized on
multiple machines.

Another benefit of SGNMT’s predictor framework is that it enables us to write code in-
dependently of any NMT package, and swap the NMT back end with more recent software if

6https://github.com/ehasler/tensorflow
7https://github.com/tensorflow/nmt, trained with Tensor2Tensor (Google, 2017)



needed. For example, our previous research work on lattice rescoring (Stahlberg et al., 2016)
and MBR-based NMT (Stahlberg et al., 2017a) used the NMT package Blocks (van Merriënboer
et al., 2015) which is based on Theano (Bastien et al., 2012). Since both Blocks and Theano have
been discontinued, we recently switched to a Tensor2Tensor (Google, 2017) back end based
on TensorFlow (Abadi et al., 2016). Without reimplementation, we could validate that MBR-
based NMT holds up even under a much stronger NMT model, the Transformer model (Vaswani
et al., 2017). Tab. 2 compares the performance of lattice rescoring and MBR-based combination
across four different NMT implementations using SGNMT.

6 SGNMT for Teaching

SGNMT is being used for teaching at the University of Cambridge in course work and student
research projects. In the 2015-16 academic year, two students on the Cambridge MPhil in Ma-
chine Learning, Speech and Language Technology used SGNMT for their dissertation projects.
The first project involved using SGNMT with OpenFST (Allauzen et al., 2007) for applying
subword models in SMT (Gao, 2016). The second project developed automatic music composi-
tion by LSTMs where WFSAs were used to define the space of allowable chord progressions in
‘Bach’ chorales (Tomczak, 2016). The LSTM provides the ‘creativity’ and the WFSA enforces
constraints that the chorales must obey. This year, SGNMT provides the decoder for a student
project about simultaneous neural machine translation.

SGNMT is also part of two practicals for MPhil students at Cambridge.8 The first practical
applies different kinds of language models to restore the correct casing in a lowercased sentence
using FSTs. Since SGNMT has good support for the OpenFST library (Allauzen et al., 2007)
and can both read and write FSTs, it is used to integrate neural models such as RNN LMs into
the exercise. The second practical focuses on decoding strategies for NMT and explores the
synergies of word- and subword-based models and the potential of combining SMT and NMT.

7 SGNMT in the Industry

SDL Research continuously balances the research and development of neural machine trans-
lation with a focus on bringing state-of-the-art MT products to the market9 while pushing the
boundaries of MT technology via innovation and quick experimental research.

In this context, it is highly desirable to use versatile tools that can be easily extended
to support and combine new models, allowing for quick and painless experimentation. SDL
Research chose SGNMT over all other existing tools for rapid prototyping and assessment of
new research avenues. Among other Neural MT innovations, SDL Research used SGNMT
to prototype and assess attention-based Neural MT (Bahdanau et al., 2015), Neural MT model
shrinking (Stahlberg and Byrne, 2017) and the recent Transformer model (Vaswani et al., 2017).
As described in Sec. 5, the Transformer model is trivially supported by the SGNMT decoder
through its predictor framework, and is easy to combine with other predictors. It is worth noting
that at the time of writing this paper, Transformer ensembles are not natively supported by the
Tensor2Tensor decoder (Google, 2017).

Although SDL Research’s decoder is homegrown, the SGNMT decoder is still a valuable
reference tool for side-by-side comparison between state-of-the-art Neural MT research and the
Neural MT product.

8http://ucam-smt.github.io/sgnmt/html/kyoto_nmt.html
9http://www.sdl.com/software-and-services/translation-software/
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